Calculation: QU4k6h - 1

 a* x^2+ b* x+c  = 
 a* (x-x1)* (x-x2)
 a* x^2+ b* x+c =  a* (x-x1)* (x-x2)$$a\cdot x^{2}+b\cdot x+c$$ = $$a\cdot (x-x1)\cdot (x-x2)$$
 a* x^2- a* (x-x1)* (x-x2) = - b* x-c$$a\cdot x^{2}-a\cdot (x-x1)\cdot (x-x2)$$ = $$-b\cdot x-c$$
 x* x2* a+ x1* x* a- x1* x2* a = - b* x-c$$x\cdot x2\cdot a+x1\cdot x\cdot a-x1\cdot x2\cdot a$$ = $$-b\cdot x-c$$
 a* ( x* x2+ x1* x- x1* x2) = - b* x-c$$a\cdot (x\cdot x2+x1\cdot x-x1\cdot x2)$$ = $$-b\cdot x-c$$
a =  
 (- b* x-c)
/ ( x* x2+ x1* x- x1* x2)
$$a$$ = $$\frac{-b\cdot x-c}{x\cdot x2+x1\cdot x-x1\cdot x2}$$
a =  
 (- b* x-c)
/ ( x* x2+ x* x1- x1* x2)
$$a$$ = $$\frac{-b\cdot x-c}{x\cdot x2+x\cdot x1-x1\cdot x2}$$
a = - 
 b* x
/ ( x* x2+ x* x1- x1* x2)
- 
 c
/ ( x* x2+ x* x1- x1* x2)
$$a$$ = $$-\frac{b\cdot x}{x\cdot x2+x\cdot x1-x1\cdot x2}-\frac{c}{x\cdot x2+x\cdot x1-x1\cdot x2}$$