Calculation: rdb08z - 1

log(a, x^n)  = 
n+log(a,x)
log(a, x^n) = n+log(a,x)$$log_{a}(x^{n})$$ = $$n+log_{a}(x)$$
log(a, x^n)-log(a,x) = n$$log_{a}(x^{n})-log_{a}(x)$$ = $$n$$
-log(a, 
 x
/ x^n
)
 = n$$-log_{a}(\frac{x}{x^{n}})$$ = $$n$$
log(a, 
 x
/ x^n
)
 = -n$$log_{a}(\frac{x}{x^{n}})$$ = $$-n$$
a = saknis(-n, 
 x
/ x^n
)
$$a$$ = $$\sqrt[-n]{\frac{x}{x^{n}}}$$